ACROSS–DataScience

Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave

Centar ACROSS-DataScience djeluje kao središte suradnje akademske zajednice s poslovnim i javnim sektorom u istraživanju i razvoju novih metodologija i naprednih inženjerskih pristupa za znanost o podatcima i kooperativne sustave.


Projekt DATACROSS – Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima i Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, istraživačka jedinica ACROSS, organiziraju


"2. ljetnu školu iz domene naprednih kooperatvinih sustava"

("2nd Summer School on Advanced Cooperative Systems")


koja će se održati 22.-23. rujna 2022. godine, u dvorani D1 FER-a. Ljetna je škola otvorena za sve zainteresirane istraživače iz akademske zajednice i industrije u prethodnu prijavu putem sljedeće poveznice

Program ljetne škole dostupan je ovdje i u nastavku obavijesti.

Thursday, September 22, 2022

09:00-09:45

Krzysztof Lis, EPFL, Lausanne, Switzerland

How Synthectic Training Powers Anomaly and Obstacle Detection in Traffic Scenes

09:45-10:30

Hermann Blum, ETH Zurich, Switzerland

Leveraging Multi-Modality for Robust Scene Understanding

10:30-10:40

Coffee break

10:40-11:00

Manuel Schwonberg, CARIAD, Germany

Enabling Al in Safety-Critical Automotive Products

11:00-11:20

Mateusz Komorkiewicz, APTIV

Automotive Big Data Video Analysis with AiBox

11:20-11:40

Christian Nolde, dSPACE, Germany

Challenges in Data Selection: How to Fish in the Data Lake

11:40-12:00

Oliver Grau, Intel

Learning Confidence Classification from Richly Annotated Synthetic Data

12:00-14:00

Lunch

14:00-14:30

Svenja Uhlemeyer, University of Wuppertal, Germany

Tracking and Retrieval of Out of Distribution Objects in Video Sequences

14:30-15:00

Robin Chan, Bielefeld Wuppertal, Germany

SegmentMelfYouCan: A Benchmark for Anomaly Segmentation

15:00-15:30

Tobias Riedlinger, University of Wuppertal, Germany

Gradient-Based Quantification of Epistemic Uncertainty for Deep Object Detectors

15:30-15:45

Coffee break

15:45-16:15

Kira Maag, Ruhr University Bochum, Germany

Gradient-Improving Robustness under Domain Shift of Semantic Segmentation by Depth Estimation

16:15-16:45

Annika Mutze, University of Wuppertal, Germany

Domain Adaptation with Generative Adversarial Networks

16:45-17:05

Lana Periša, Rimac Automobili, Croatia

Challenges in Scene Understanding for Autonomous Racing

Friday, September 23, 2022

09:00-09:45

Oliver Zendel, AIT Vienna, Austria

Robust Evaluation of Computer Vision for Autonomous Driving

09:45-10:30

Christos Sakaridis, ETH Zurich, Switzerland

Creating Synthetic and Real data for Semantic Scene Understanding in Adverse Conditions

10:30-10:45

Coffee break

10:45-11:30

Matthias Rottmann, EPFL, Switzerland

Automated detection of Labeling Errors in for Semantic Segmentation Datasets

11:30-12:15

Tomáš Vojíř, Czech Technical University in Prague, Czech Republic

Road Anomaly Detection by Generative and Discriminative Road Appearance Modelling

12:15-14:00

Lunch

14:00-14:20

Juraj Radić, Gideon Brothers, Croatia

Scene Understanding for Autonomous Mobile Robots in Warehouse Operations

14:20-14:40

Marin Oršić, Microlink, Croatia

Transformers Architectures in Production: Efficiency and Self-Supervision

14:40-15:00

Ana Cej Gagović, Xylon, Croatia

Implementing Computer Vision Alogrithms on FPGAs: Challenges & Advantages

15:00-15:20

Damjan Miklić, RoMB technologies, Croatia

From the Road into the Warehouse: Semantic Segmentation for Autonomous Forklifts

15:20-15:35

Coffee break

15:35-15:50

Petra Bevandić, University of Zagreb, Croatia

Cross-Domain Learning of Dense Prediction Models

15:50-16:05

Josip Šarić, University of Zagreb, Croatia

Dense Semantic Forecasting

16:05-16:20

Matej Grcić, University of Zagreb, Croatia

Dense Anomaly Detection with Synthetic Negatives

16:20-16:35

Ivan Grubišić, University of Zagreb

Revisiting-One-Way Consistency for Semi-Supervised Semantic Segmentation

16:35-16:50

Marin Kačan, University of Zagreb, Croatia

Detection of Road-Safety Attributes in Video

 

Popis obavijesti